Semester I

AGB-101. Fundamentals of Horticulture (NEW) Credit hours: 2(1+1)

Theory

Horticulture-Its definition and branches, importance and scope; horticultural and botanical classification; climate and soil for horticultural crops; Plant propagation-methods and propagating structures; principles of orchard establishment; Principles and methods of training and pruning, juvenility and flower bud differentiation; unfruitfulness; pollination, pollinizers and pollinators; fertilization and parthenocarpy; kitchen gardening; garden types and parts; lawn making; medicinal and aromatic plants; species and condiments; use of plant bio-regulators in horticulture. Irrigation & fertilizers application-method and quantity.

Practical

AGB-102. Fundamentals of Plant Biochemistry and Biotechnology Credit hours: 3(2+1)

Theory

Concepts and applications of plant biotechnology: Scope, organ culture, embryo culture, cell suspension culture, callus culture, anther culture, pollen culture and ovule culture and their applications; Micro-propagation methods; organogenesis and embryogenesis, Synthetic seeds and their significance; Embryo rescue and its significance; somatic hybridization and cybrids; Somaclonal variation and its use in crop improvement; cryo-preservation; Introduction to recombinant DNA methods: physical (Gene gun method), chemical (PEG mediated) and Agrobacterium mediated gene transfer methods; Transgenics and its importance in crop improvement; PCR techniques and its applications; RFLP, RAPD, SSR; Marker Assisted Breeding in crop improvement; Biotechnology regulations.

Practical

AGB-103. Fundamentals of Soil Science
Credit hours: 3(2+1)

Theory
Soil as a natural body. Pedological and edaphological concepts of soil; Soil genesis: soil forming rocks and minerals; weathering, processes and factors of soil formation; Soil Profile, components of soil; Soil physical properties: soil-texture, structure, density and porosity, soil colour, consistence and plasticity; Elementary knowledge of soil taxonomy classification and soils of India; Soil water retention, movement and availability; soil air, composition, gaseous exchange, problem and plant growth; source, amount and flow of heat in soil; soil temperature and plant growth; Soil reaction-pH, soil acidity and alkalinity, buffering, effect of pH on nutrient availability; soil colloids - inorganic and organic; silicate clays: constitution and properties; sources of charge ion exchange, cation exchange capacity, base saturation; soil organic matter: composition, properties and its influence on soil properties; humic substances - nature and properties; soil organisms: macro and micro organisms, their beneficial and harmful effects; Soil pollution - behaviour of pesticides and inorganic contaminants, prevention and mitigation of soil pollution.

Practical
AGB-104. Introduction to Forestry (New) Credit hours: 2(1+1)

Theory

Introduction – definitions of basic terms related to forestry, objectives of silviculture, forest classification, salient features of Indian Forest Policies. Forest regeneration, Natural regeneration - natural regeneration from seed and vegetative parts, coppicing, pollarding, root suckers; Artificial regeneration – objectives, choice between natural and artificial regeneration, essential preliminary considerations. Crown classification. Tending operations – weeding, cleaning, thinning – mechanical, ordinary, crown and advance thinning. Forest mensuration – objectives, diameter measurement, instruments used in diameter measurement; Non instrumental methods of height measurement - shadow and single pole method; Instrumental methods of height measurement - geometric and trigonometric principles, instruments used in height measurement; tree stem form, form factor, form quotient, measurement of volume of felled and standing trees, age determination of trees. Agroforestry – definitions, importance, criteria of selection of trees in agroforestry, different agroforestry systems prevalent in the country, shifting cultivation, taungya, alley cropping, wind breaks and shelter belts, home gardens. Cultivation practices of two important fast growing tree species of the region.

Practical

AGB-105. Comprehension and Communication Skills in English Credit hours: 2(1+1)

Theory

Practical

AGB-106. Fundamentals of Agronomy Credit hours: 4(3+1)

Theory

Agronomy and its scope, seeds and sowing, tillage and tilth, crop density and geometry, Crop nutrition, manures and fertilizers, nutrient use efficiency, water resources, soil plant water relationship, crop water requirement, water use efficiency, irrigation- scheduling criteria and methods, quality of irrigation water, water logging.

Practical

Identification of crops, seeds, fertilizers, pesticides and tillage implements, Effect of sowing depth on germination and seedling vigour, Identification of weeds in crops, Methods of herbicide and fertilizer application, Study of yield contributing characters and yield estimation, Seed germination and viability test, Numerical exercises on fertilizer requirement, plant population, herbicides and water requirement, Use of tillage implements-reversible plough, one way plough, harrow, leveler, seed drill, Study of soil moisture measuring devices, Measurement of field capacity, bulk density and infiltration rate, Measurement of irrigation water.
AGB-107. Elementary Mathematics (New) Credit hours: 2(2+0)

Theory

Straight lines : Distance formula, section formula (internal and external division), Change of axes (only origin changed), Equation of co-ordinate axes, Equation of lines parallel to axes, Slope-intercept form of equation of line, Slope-point form of equation of line, Two point form of equation of line, Intercept form of equation of line, Normal form of equation of line, General form of equation of line, Point of intersection of two st. lines, Angles between two st. lines, Parallel lines, Perpendicular lines, Angle of bisectors between two lines, Area of triangle and quadrilateral.

Circle: Equation of circle whose centre and radius is known, General equation of a circle, Equation of circle passing through three given points, Equation of circle whose diameters is line joining two points \((x_1, y_1)\) & \((x_2, y_2)\), Tangent and Normal to a given circle at given point (Simple problems), Condition of tangency of a line \(y = mx + c\) to the given circle \(x^2 + y^2 = a^2\).

Differential Calculus: Definition of function, limit and continuity, Simple problems on limit, Simple problems on continuity, Differentiation of \(x^n, e^x, \sin x \& \cos x\) from first principle, Derivatives of sum, difference, product and quotient of two functions, Logarithmic differentiation (Simple problem based on it), Differentiation by substitution method and simple problems based on it, Differentiation of Inverse Trigonometric functions. Maxima and Minima of the functions of the form \(y=f (x)\) (Simple problems based on it).

Integral Calculus: Integration of simple functions, Integration of Product of two functions, Integration by substitution method, Definite Integral (simple problems based on it), Area under simple well-known curves (simple problems based on it).

Matrices and Determinants: Definition of Matrices, Addition, Subtraction, Multiplication, Transpose and Inverse up to 3rd order, Properties of determinants up to 3rd order and their evaluation.
AGB-108. Introductory Biology (New) Credit hours: 2(1+1)

Theory

Practical

AGB-109. Agriculture Heritage (New Course)Credit hours: 1(1+0)

Theory

Introduction of Indian agricultural heritage; Ancient agricultural practices, Relevance of heritage to present day agriculture; Past and present status of agriculture and farmers in society; Journey of Indian agriculture and its development from past to modern era; Plant production and protection through indigenous traditional knowledge; Crop voyage in India and world; Agriculture scope; Importance of agriculture and agricultural resources available in India; Crop significance and classifications; National agriculture setup in India; Current scenario of Indian agriculture; Indian agricultural concerns and future prospects.
AGB-110. Rural Sociology & Educational Psychology
Credit hours: 2(2+0)

Theory
AGB-112. Human Value and Ethics
Credit hours: 1(1+0)

Theory

AGB-111. NSS/NCC/Physical Education & Yoga Practices
Credit hours: 2(0+2)

Theory

Course aims at evoking social consciousness among students through various activities viz., working together, constructive and creative social work, to be skilful in executing democratic leadership, developing skill in programme development to be able for self employment, reducing gap between educated and uneducated, increasing awareness and desire to help sections of society.

Following activities are to be taken up under the NSS course:

- Introduction and basic components of NSS: Orientation
- NSS programmes and activities
- Understanding youth
- Community mobilisation
- Social harmony and national integration
- Volunteerism and shramdan
- Citizenship, constitution and human rights
- Family and society
- Importance and role of youth leadership
- Life competencies
- Youth development programmes
- Health, hygiene and sanitation
- Youth health, lifestyle, HIV AIDS and first aid
- Youth and yoga
- Vocational skill development
- Issues related environment
- Disaster management
- Entrepreneurship development
- Formulation of production oriented project
- Documentation and data reporting
- Resource mobilization
- Additional life skills
- Activities directed by the Central and State Government

All the activities related to the National Service Scheme course is distributed under four different courses viz., National Service Scheme I, National Service Scheme II, National Service Scheme III and National Service Scheme IV each having one credit load. The entire four courses should be offered continuously for two years. A student enrolled in NSS course should put in at least 60 hours of social work in different activities in a semester other than five regular one day camp in a year and one special camp for duration of 7 days at any semester break period in the two year. Different activities will include orientation lectures and practical works. Activities directed by the Central and State Government have to be performed by all the volunteers of NSS as per direction.
Semester III
AGB-301. Crop Production Technology-I (Kharif Crops) Credit hours: 2(1+1)

Theory
Origin, geographical distribution, economic importance, soil and climatic requirements, varieties, cultural practices and yield of Kharif crops. Cereals – rice, maize, sorghum, pearl millet and finger millet, pulses-pigeonpea, mungbean and urdbean; oilseeds- groundnut, and soybean; fibre crops- cotton & Jute; forage crops-sorghum, cowpea, cluster bean and napier.

Practical
Rice nursery preparation, transplanting of Rice, sowing of soybean, pigeonpea and mungbean, maize, groundnut and cotton, effect of seed size on germination and seedling vigour of kharif season crops, effect of sowing depth on germination of kharif crops, identification of weeds in kharif season crops, top dressing and foliar feeding of nutrients, study of yield contributing characters and yield calculation of kharif season crops, study of crop varieties and important agronomic experiments at experimental farm. study of forage experiments, morphological description of kharif season crops, visit to research centres of related crops.
AGB-302. Fundamentals of Plant Breeding Credit hours: 3(2+1)

Theory

Historical development, concept, nature and role of plant breeding, major achievements and future prospects; Genetics in relation to plant breeding, modes of reproduction and apomixes, self – incompatibility and male sterility- genetic consequences, cultivar options. Domestication, Acclimatization, introduction; Centre of origin/diversity, component of Genetic variation; Heritability and genetic advance; Genetic basis and breeding methods in self-pollinated crops-mass and pure line selection, hybridization techniques and handling of segregating population; Multiline concept. Concepts of population genetics and Hardy-Weinberg Law, Genetic basis and methods of breeding cross pollinated crops, modes of selection; Heterosis and inbreeding depression, development of inbred lines and hybrids, composite and synthetic varieties; Breeding methods in asexually propagated crops, clonal selection and hybridization; Wide hybridization and pre-breeding; Polyploidy in relation to plant breeding, mutation breeding-methods and uses; Breeding for important biotic and abiotic stresses; Biotechnological tools-DNA markers and marker assisted selection. Participatory plant breeding; Intellectual Property Rights, Patenting, Plant Breeders and & Farmer’s Rights.

Practical

AGB-303. Agricultural Finance and Co-Operation Credit hours: 3(2+1)

Theory
Agricultural Finance- meaning, scope and significance, credit needs and its role in Indian agriculture. Agricultural credit: meaning, definition, need, classification. Credit analysis: 4 R’s, and 3C’s of credits. Sources of agricultural finance: institutional and non-institutional sources, commercial banks, social control and nationalization of commercial banks, Micro financing including KCC. Lead bank scheme, RRBs, Scale of finance and unit cost. An introduction to higher financing institutions – RBI, NABARD, ADB, IMF, world bank, Insurance and Credit Guarantee Corporation of India. Cost of credit. Recent development in agricultural credit. Preparation and analysis of financial statements – Balance Sheet and Income Statement. Basic guidelines for preparation of project reports- Bank norms – SWOT analysis.

Agricultural Cooperation – Meaning, brief history of cooperative development in India, objectives, principles of cooperation, significance of cooperatives in Indian agriculture. Agricultural Cooperation in India- credit, marketing, consumer and multi-purpose cooperatives, farmers’ service cooperative societies, processing cooperatives, farming cooperatives, cooperative warehousing; role of ICA, NCUI, NCDC, NAFED.

Practicals
AGB-304. Agricultural Informatics

Theory

Introduction to Computers, Anatomy of Computers, Memory Concepts, Units of Memory, Operating System, definition and types, Applications of MS-Office for creating, Editing and Formatting a document, Data presentation, tabulation and graph creation, statistical analysis, mathematical expressions, Database, concepts and types, creating database, uses of DBMS in Agriculture, Internet and World Wide Web (WWW), Concepts and components.

e-Agriculture, concepts, design and development. Application of innovative ways to use information and communication technologies (IT) in Agriculture. Computer Models in Agriculture: statistical, weather analysis and crop simulation models, concepts, structure, inputs-outputs files, limitation, advantages and application of models for understanding plant processes, sensitivity, verification, calibration and validation. IT application for computation of water and nutrient requirement of crops, Computer-controlled devices (automated systems) for Agri-input management, Smartphone mobile apps in Agriculture for farm advises, market price, postharvest management etc; Geospatial technology, concepts, techniques, components and uses for generating valuable agri-information. Decision support systems, concepts, components and applications in Agriculture, Agriculture Expert System, Soil Information Systems etc for supporting Farm decisions. Preparation of contingent crop-planning and crop calendars using IT tools.

Practical

Study of Computer Components, accessories, practice of important DOS Commands. Introduction of different operating systems such as windows, Unix/ Linux, Creating, Files & Folders, File Management. Use of MS-WORD and MS Power-point for creating, editing and presenting a scientific Document. MS-EXCEL - Creating a spreadsheet, use of statistical tools, writing expressions, creating graphs, analysis of scientific data, handling macros. MS-ACCESS: Creating Database, preparing queries and reports, demonstration of Agri-information system. Introduction to World Wide Web (WWW) and its components. Introduction of programming languages such as Visual Basic, Java, Fortran, C, C++. Hands on practice on Crop Simulation Models (CSM), DSSAT/Crop-Info/CropSyst/ Wofost. Preparation of Inputs file for CSM and study of model outputs, computation of water and nutrient requirements of crop using CSM and IT tools. Use of smart phones and other devices in agro-advisory and dissemination of market information. Introduction of Geospatial Technology, for generating information important for Agriculture. Hands on practice on preparation of Decision Support System. Preparation of contingent crop planning.
AGB-305. Farm Machinery and Power

Credit hours: 2(1+1)

Theory

Status of Farm Power in India, Sources of Farm Power, I.C. engines, working principles of I.C. engines, comparison of two stroke and four stroke cycle engines, Study of different components of I.C. engine, I.C. engine terminology and solved problems, Familiarization with different systems of I.C. engines: Air cleaning, cooling, lubrication, fuel supply and hydraulic control system of a tractor, Familiarization with Power transmission system: clutch, gear box, differential and final drive of a tractor, Tractor types, Cost analysis of tractor power and attached implement, Familiarization with Primary and Secondary Tillage implement, Implement for hill agriculture, implement for intercultural operations, Familiarization with Primary and Secondary Tillage implement, Implement for hill agriculture, implement for intercultural operations, Familiarization with Sowing and planting equipment, calibration of a seed drill and solved examples, Familiarization with Plant Protection equipment, Familiarization with harvesting and threshing equipment.

Practicals

Study of different components of I.C. engine. To study air cleaning and cooling system of engine, Familiarization with clutch, transmission, differential and final drive of a tractor, Familiarization with lubrication and fuel supply system of engine, Familiarization with brake, steering, hydraulic control system of engine, Learning of tractor driving, Familiarization with operation of power tiller, Implement for hill agriculture, Familiarization with different types of primary and secondary tillage implements: mould plough, disc plough and disc harrow. Familiarization with seed-cum-fertilizer drills their seed metering mechanism and calibration, planters and transplanter Familiarization with different types of sprayers and dusters Familiarization with different inter-cultivation equipment, Familiarization with harvesting and threshing machinery.
AGB-306. Production Technology for Vegetable and Spices Credit hours: 2(1+1)

Theory

Importance of vegetables & spices in human nutrition and national economy, brief about origin, area, production, improved varieties and cultivation practices such as time of sowing, sowing, transplanting techniques, planting distance, fertilizer requirements, irrigation, weed management, harvesting, storage, physiological disorders, disease and pest control and seed production of important vegetable and spices (Tomato, Brinjal, Chilli, Capsicum, Cucumber, Melons, Gourds, Pumpkin, French bean, Peas; Cole crops such as Cabbage, Cauliflower, Knol-khol; Bulb crops such as Onion, Garlic; Root crops such as Carrot, Raddish, Beetroot; Tuber crops such as Potato; Leafy vegetables such as Amaranth, Palak. Perennial vegetables).

Practical

AGB-307. Environmental Studies and Disaster Management Credit hours: 3(2+1)

Theory

Multidisciplinary nature of environmental studies Definition, scope and importance.
Natural Resources: Renewable and non-renewable resources, Natural resources and associated problems. a) Forest resources: Use and over-exploitation, deforestation, case studies. Timber extraction, mining, dams and their effects on forest and tribal people. b) Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems. c) Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies. d) Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies. e) Energy resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources. Case studies. f) Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification. • Role of an individual in conservation of natural resources. • Equitable use of resources for sustainable lifestyles.

Solid Waste Management: causes, effects and control measures of urban and industrial wastes. Role of an individual in prevention of pollution.

DISASTER MANAGEMENT

Natural Disasters- Meaning and nature of natural disasters, their types and effects. Floods, drought, cyclone, earthquakes, landslides, avalanches, volcanic eruptions, Heat and cold waves, Climatic change: global warming, Sea level rise, ozone depletion.

Man Made Disasters- Nuclear disasters, chemical disasters, biological disasters, building fire, coal fire, forest fire, oil fire, air pollution, water pollution, deforestation, industrial waste water pollution, road accidents, rail accidents, air accidents, sea accidents.

Disaster Management- Effect to migrate natural disaster at national and global levels. International strategy for disaster reduction. Concept of disaster management, national disaster management framework; financial arrangements; role of NGOs, community –based organizations and media. Central, state, district and local administration; Armed forces in disaster response; Disaster response; Police and other organizations.

Practical

Pollution case studies. Case Studies- Field work: Visit to a local area to document environmental assets river/ forest/ grassland/ hill/ mountain, visit to a local polluted site-Urban/Rural/Industrial/Agricultural, study of common plants, insects, birds and study of simple ecosystems-pond, river, hill slopes, etc.
AGB-308. Statistical Methods

Credit hours: 2(1+1)

Theory

Practical

AGB-309. Livestock & Poultry Management Credit hours: 4(3+1)

Theory

Important Indian and exotic breeds of cattle, buffalo, sheep, goat, swine and poultry. Improvement of farm animals and poultry.

Introduction of livestock and poultry diseases. Prevention (including vaccination schedule) and control of important diseases of livestock and poultry.

Practical

Semester V

AGB-501. Principles of Integrated Pest and Disease Management
Credit hours: 3(2+1)

Theory

Practical

Methods of diagnosis and detection of various insect pests, and plant diseases, Methods of insect pests and plant disease measurement, Assessment of crop yield losses, calculations based on economics of IPM, Identification of biocontrol agents, different predators and natural enemies. Mass multiplication of *Trichoderma, Pseudomonas, Trichogramma, NPV* etc. Identification and nature of damage of important insect pests and diseases and their management. Crop (agro-ecosystem) dynamics of a selected insect pest and diseases. Plan & assess preventive strategies (IPM module) and decision making. crop monitoring attacked by insect, pest and diseases. Awareness campaign at farmers fields.
AGB-502. Manures, Fertilizers and Soil Fertility Management
Credit Hours: 3(2+1)

Theory

Chemical fertilizers: classification, composition and properties of major nitrogenous, phosphatic, potassic fertilizers, secondary & micronutrient fertilizers, Complex fertilizers, nano fertilizers Soil amendments, Fertilizer Storage, Fertilizer Control Order.

Practical

AGB-503. Pests of Crops and Stored Grains and their Management
Credit hours: 3(2+1)

Theory

General account on nature and type of damage by different arthropods pests. Scientific name, order, family, host range, distribution, biology and bionomics, nature of damage, and management of major pests and scientific name, order, family, host range, distribution, nature of damage and control practice other important arthropod pests of various field crop, vegetable crop, fruit crop, plantation crops, ornamental crops, narcotics, spices and condiments. Factors affecting losses of stored grain and role of physical, biological, mechanical and chemical factors in deterioration of grain. Insect pests, mites, rodents, birds and microorganisms associated with stored grain and their management. Storage structure and methods of grain storage and fundamental principles of grain store management.

Practical

Identification of different types of damage. Identification and study of life cycle and seasonal history of various insect pests attacking crops and their produce: (a) Field Crops; (b) Vegetable Crops; (c) Fruit Crops; (d) Plantation, gardens, Narcotics, spices & condiments. Identification of insect pests and Mites associated with stored grain. Determination of insect infestation by different methods. Assessment of losses due to insects. Calculations on the doses of insecticides application technique. Fumigation of grain store / godown. Identification of rodents and rodent control operations in godowns. Identification of birds and bird control operations in godowns. Determination of moisture content of grain. Methods of grain sampling under storage condition. Visit to Indian Storage Management and Research Institute, Hapur and Quality Laboratory, Department of Food., Delhi. Visit to nearest FCI godowns.
AGB-504. Diseases of Field & Horticultural Crops & their Management-I Credit hours: 3 (2+1)

Theory

Symptoms, etiology, disease cycle and management of major diseases of following crops:

Field Crops: Rice: blast, brown spot, bacterial blight, sheath blight, false smut, khaira and tungro; Maize: stalk rots, downy mildew, leaf spots; Sorghum: smuts, grain mold and anthracnose; Bajra: downy mildew and ergot; Groundnut: early and late leaf spots, wilt

Soybean: Rhizoctonia blight, bacterial spot, seed and seedling rot and mosaic; Pigeonpea: Phytophthora blight, wilt and sterility mosaic; Finger millet: Blast and leaf spot; black & green gram: Cercospora leaf spot and anthracnose, web blight and yellow mosaic; Castor: Phytophthora blight; Tobacco: black shank, black root rot and mosaic. Horticultural Crops: Guava: wilt and anthracnose; Banana: Panama wilt, bacterial wilt, Sigatoka and bunchy top; Papaya: foot rot, leaf curl and mosaic; Pomegranate: bacterial blight; Cruciferous vegetables: Alternaria leaf spot and black rot; Brinjal: Phomopsis blight and fruit rot and Sclerotinia blight; Tomato: damping off, wilt, early and late blight, buck eye rot and leaf curl and mosaic; Okra: Yellow Vein Mosaic; Beans: anthracnose and bacterial blight; Ginger: soft rot; Colocasia: Phytophthora blight; Coconut: wilt and bud rot; Tea: blister blight; Coffee: rust

Practical

Identification and histopathological studies of selected diseases of field and horticultural crops covered in theory. Field visit for the diagnosis of field problems. Collection and preservation of plant diseased specimens for Herbarium; Note: Students should submit 50 pressed and well-mounted specimens.
AGB-505. Crop Improvement – I (Kharif) Credit hours: 2(1+1)

Theory

Centers of origin, distribution of species, wild relatives in different cereals; pulses; oilseeds; fibres; fodders and cash crops; vegetable and horticultural crops; Plant genetic resources, its utilization and conservation Floral biology, study of genetics of qualitative and quantitative characters; Important concepts of breeding self pollinated, cross pollinated and vegetatively propagated crops; Major breeding objectives and procedures including conventional and modern innovative approaches for development of hybrids and varieties for yield, adaptability, stability, abiotic and biotic stress tolerance and quality (physical, chemical, nutritional); Seed production technology in self pollinated, cross pollinated and vegetatively propagated crops. Hybrid seed production technology in Maize, Rice, Sorghum, Pearl millet and Pigeonpea, etc. Ideotype concept and climate resilient crop varieties for future.

Practical

Emasculaton and hybridization techniques in different crop species; viz., Rice, Maize, Sorghum, Pearl Millet, Ragi, Pigeonpea, Urdbean, Mungbean, Soybean, Groundnut, Seasame, Caster, Cotton, Cowpea, Pearl millet and Tobacco. Maintenance breeding of different kharif crops. Handling of germplasm and segregating populations by different methods like pedigree, bulk and single seed decent methods; Study of field techniques for seed production and hybrid seeds production in Kharif crops; Estimation of heterosis, inbreeding depression and heritability; Layout of field experiments; Study of quality characters, donor parents for different characters; Visit to seed production plots; Visit to AICRP plots of different field crops.
AGB-506. Entrepreneurship Development and Business Communication

Credit hours: 2(1+1)

Theory

Concept of Entrepreneur, Entrepreneurship Development, Characteristics of entrepreneurs; Assessment of entrepreneurship skills, SWOT Analysis & achievement motivation, Entrepreneurial behavior, Government policy and programs and institutions for entrepreneurship development, Entrepreneurial Development Process; Business Leadership Skills; Communication skills for entrepreneurship development, Developing organizational skill, Developing Managerial skills, Problem solving skill, Achievement motivation; time management; Supply chain management and Total quality management, Project Planning Formulation and report preparation; Opportunities for entrepreneurship and rural entrepreneurship.

Practical

Assessing entrepreneurial potential, problem solving ability, managerial skills and achievement motivation, exercise in creativity, time audit, preparation of business plan and proposal writing, visit to entrepreneurship development institute and entrepreneurs.
AGB-507. Geoinformatics and Nano-technology for Precision Farming Credit hours: 2(1+1)

Theory

Precision agriculture: concepts and techniques; their issues and concerns for Indian agriculture; Geo-informatics- definition, concepts, tool and techniques; their use in Precision Agriculture. Crop discrimination and Yield monitoring, soil mapping; fertilizer recommendation using geospatial technologies; Spatial data and their management in GIS; Geodesy and its basic principles; Remote sensing concepts and application in agriculture; Image processing and interpretation; Global positioning system (GPS), components and its functions; System Simulation- Concepts and principles, Introduction to crop Simulation Models and their uses for optimization of Agricultural Inputs; STCR approach for precision agriculture; Nanotechnology, definition, concepts and techniques, brief introduction about nanoscale effects, nano-particles, nano-pesticides, nano-fertilizers, nano-sensors, Use of nanotechnology in tillage, seed, water, fertilizer, plant protection for scaling-up farm productivity.

Practical

AGB-508. Practical Crop Production-I *(Kharif Crops)* Credit hours: 2(0+2)

Practical

Crop planning, raising field crops in multiple cropping systems: Field preparation, seed, treatment, nursery raising, sowing, nutrient, water and weed management and management of insect-pests diseases of crops, harvesting, threshing, drying winnowing, storage and marketing of produce. The emphasis will be given to seed production, mechanization, resource conservation and integrated nutrient, insect-pest and disease management technologies. Preparation of balance sheet including cost of cultivation, net returns per student as well as per team of 8-10 students.
AGB-509. Intellectual Property Rights
Credit hours: 1(1+0)

Theory

Introduction and meaning of intellectual property, brief introduction to GATT, WTO, TRIPs and WIPO, Treaties for IPR protection: Madrid protocol, Berne Convention, Budapest treaty, etc.

Convention on Biological Diversity, International treaty on plant genetic resources for food and agriculture (ITPGRFA). Indian Biological Diversity Act, 2002 and its salient features, access and benefit sharing.
AGB-510. Food Safety Issues

Credit hours: 3(2+1)

Theory

Practical

Semester VII

AGB-701. Rural Agricultural Work Experience and Agro-industrial Attachment (RAWE & AIA)

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Activities</th>
<th>No. of weeks</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>General orientation & On campus training by different faculties</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>Village attachment/ Unit attachment in Univ./ College. KVK/ Res. Stn.</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Agro-Industrial Attachment</td>
<td>10</td>
<td>06</td>
</tr>
<tr>
<td>4</td>
<td>Project Report Preparation, Presentation and Evaluation</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total weeks for RAWE & AIA</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

RAWE Component-I

Village Attachment Training Programme

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Activity</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Orientation and Survey of Village</td>
<td>1 week</td>
</tr>
<tr>
<td>2</td>
<td>Agronomical Interventions</td>
<td>1 week</td>
</tr>
<tr>
<td>3</td>
<td>Plant Protection Interventions</td>
<td>1 week</td>
</tr>
<tr>
<td>4</td>
<td>Soil Improvement Interventions (Soil sampling and testing)</td>
<td>1 week</td>
</tr>
<tr>
<td>5</td>
<td>Fruit and Vegetable production interventions</td>
<td>1 week</td>
</tr>
<tr>
<td>6</td>
<td>Animal Production Interventions</td>
<td>1 week</td>
</tr>
<tr>
<td>7</td>
<td>Extension and Transfer of Technology activities</td>
<td>1 week</td>
</tr>
</tbody>
</table>

RAWE Component –II

Agro Industrial Attachment

- The students would be attached with the agro-industries for a period of 10 weeks to get an experience of the industrial environment and working.
- Students shall be placed in Agro-and Cottage industries and Commodities Boards for 10 weeks.
- Industries include Seed / Sapling production, Pesticides-insecticides, Post harvest-processing-value addition, Agri-finance institutions, etc.

Activities and Tasks during Agro-Industrial Attachment Programme

- Acquaintance with industry and staff
- Study of structure, functioning, objective and mandates of the industry
- Study of various processing units and hands-on trainings under supervision of industry staff
- Ethics of industry
- Employment generated by the industry
- Contribution of the industry promoting environment
Learning business network including outlets of the industry
Skill development in all crucial tasks of the industry
Documentation of the activities and task performed by the students
Performance evaluation, appraisal and ranking of students

Evaluation of RAWE Programme

Attendance: Minimum attendance - 85%.

Records: Students would complete the record work/ report writing/ presentations, etc. based on daily field observations recorded in notebooks and weekly diaries maintained by them.

Evaluation Procedure: Students shall be evaluated component-wise under village attachment and agro-industrial attachment. The respective component In-Charge Instructor(s), agro-industrial official and Course Coordinator will evaluate the students as under:

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>Max. Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Village attachment training</td>
<td></td>
</tr>
<tr>
<td>a. KVK/ARS/NGO scientist</td>
<td>50</td>
</tr>
<tr>
<td>b. Report Preparation</td>
<td>10</td>
</tr>
<tr>
<td>c. University Committee (Presentation & Viva-voce)</td>
<td>40</td>
</tr>
<tr>
<td>2. Industrial attachment training</td>
<td></td>
</tr>
<tr>
<td>a. Industry officials</td>
<td>50</td>
</tr>
<tr>
<td>b. Report Preparation</td>
<td>10</td>
</tr>
<tr>
<td>c. University Committee (Presentation & Viva-voce)</td>
<td>40</td>
</tr>
</tbody>
</table>

Assessment Parameters (RAWE & AIA):

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Marks (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Village Attachment</td>
<td></td>
</tr>
<tr>
<td>Regularity</td>
<td>10</td>
</tr>
<tr>
<td>Initiative & creativity</td>
<td>10</td>
</tr>
<tr>
<td>General conduct & discipline</td>
<td>10</td>
</tr>
<tr>
<td>Work performance</td>
<td>20</td>
</tr>
<tr>
<td>B Industrial Attachment</td>
<td></td>
</tr>
<tr>
<td>Initiative & compliance</td>
<td>10</td>
</tr>
<tr>
<td>General conduct and discipline</td>
<td>10</td>
</tr>
<tr>
<td>Project planning & implementation</td>
<td>10</td>
</tr>
<tr>
<td>Work performance</td>
<td>20</td>
</tr>
</tbody>
</table>