Syllabus for Ph.D. Admission Test, 2017-18

Section-A : Research Methodology (40 Marks) and Subject Specific (10 Marks)
(Multiple choice questions of 1 mark each)

Objectives and type of Research

Motivation and objective, Types of Research - Descriptive, Analytical, Applied, Fundamental, Quantitative, Qualitative, Conceptual and Empirical.
Research Formulation - Defining and formulating the research problem, Selecting the problem, Importance of literature review in defining a problem, Literature review : Primary and secondary sources.

Statistical Methods

Analytical Methods

UV-visible Spectroscopy, Raman Spectroscopy, FTIR Spectroscopy, X-ray Photoelectron Spectroscopy (XPS), γ-ray Spectroscopy, Nuclear Magnetic Resonance (NMR), Electron Spin Resonance (ESR)

Mathematical Methods

Complex Variable Theory: Complex variables and functions, Cauchy – Riemann conditions, Cauchy’s Integral Theorem, Cauchy’s Integral Formula.

Subject Specific

Quantum Mechanics: Wave particle duality, wave functions in coordinate and momentum representations, Commutators and Heisenberg uncertainty principle, Schrodinger equation (time dependent and time independent), Eigen value problems particle in a box, harmonic oscillator.
Section-B: Based on area of specialization (30 Marks)
(3 Descriptive questions of 10 marks each)

1. ATOMIC AND MOLECULAR PHYSICS

2. CONDENSED MATTER PHYSICS

Lattice translation vectors, Miller indices, symmetry operations and space groups; common crystals; Bonding in solids. Reciprocal lattice, diffraction and structure factor; Brillouin zones; diffraction of x-rays by crystals, Bragg’s law, Bragg formulation, Laue formulation, structure factor of bcc, fcc, diamond and hcp structures.

Lattice vibrations: linear monatomic and diatomic chains, acoustical and optical phonons, adiabatic approximation, normal modes of real crystals, dispersion curve; Dulong and Petit’s law, Einstein and Debye theories of specific heat of solids, T^3 law.

Free electron theory: Drude model of electrical and thermal conductivity, Sommerfeld model of free electron gas, Boltzmann transport equation, d.c. conductivity, Hall effect; defects and imperfections; colour centres.
Energy bands: failure of free electron model, Bloch's Theorem, Kronig-Penny model, Nearly free electron model, tight binding approximation, Fermi surfaces of metals and semiconductors; Semiconductors: equations of motion of charge carriers in electric and magnetic fields, effective mass, intrinsic and extrinsic conductivity, law of mass action.

Classical theory of magnetoconductivity, a.c. conductivity of metals, magnetoresistance in two-band model; Integral quantized Hall effect (IQHE), Fractional quantum Hall effect (FQHE); Alloys, order-disorder transformation, elementary theory of order, Kondo effect.

Plasmons, plasma oscillations, transverse optical modes in plasma, application to optical phonon modes in ionic crystals, interaction of e.m. waves with optical modes (polaritons), LST relation.

Pyroelectricity and ferroelectricity: polarization catastrophe, soft modes; first and second-order phase transitions, Landau theory of phase transition, antiferroelectricity, piezoelectric crystals, applications.

Magnetism: quantum theory of diamagnetism and paramagnetism, van vleckparamagnetism, Pauli paramagnetism, Neel model of antiferromagnetism and ferrimagnetism; spin waves, magnons in ferromagnets; Bloch T^{3/2} law; magnons in antiferromagnets, temperature dependence of spontaneous magnetization; exchange interaction (two electron system), Heisenberg model (spin Hamiltonian); ferromagnetic domains; Bloch wall.

Superconductivity: Meissner effect, London equations, Type I & type II superconductors, Isotope effect, BCS theory; thermodynamic properties; Ginzburg-Landau theory, flux quantization, Giaever tunneling, ac and dc Josephson effects, supercurrent quantum interference, high temperature superconductors, applications of superconductors.

3. **HIGH ENERGY PHYSICS**

Basic interactions and their mediating quanta, classification of particles: Fermions, Bosons and leptons and hadrons, particles and anti particles, idea of resonances, conservation rules in fundamental interactions, determination of spin and parity of pions, strange particles , isospin and its conservation, quarks and their quantum numbers and quark model.

Space reflection and parity, parity of charged pion, parity non-conservation in β-decay, charge conjugation, time reversal, CPT theorem, and symmetry and conservation rules.

Neutrino flavours, mass limits, neutrino detection helicity of neutrino, energy of neutrino for pion decay in flight and decay at rest, difference between ν and ν̅ and ν_e and ν_μ and neutrino flavour oscillations.

Weak, electromagnetic and strong decays of particles,, weak decays of strange particles and Cabbibo theory. Decay rates for π^+ → μ^+ν_μ(ν_μ^) and π^- → e^-ν_e(ν_e^) processes.

Natural Units, Lorentz transformations for energy and momentum, four-vectors and invariants, Laboratory and Centre-of-momentum systems, calculation of energy, momentum and angle of particles produced in nuclear reactions in Lab. and centre-of-momentum frames and their transformations, two body decay at rest and calculation of threshold energies for particle production. Review of Particle Accelerations and Detectors, Linacs, Synchrotrons and colliding-beam accelerators, principle of Cerenkov counters and calorimeters.
Phenomenology of strange particles and their semileptonic and nonleptonic decays. Cabibbo theory. Neutral kaon decays and CP violation. Flavor oscillation, Discovery of quarks, Charm, bottom and top quarks, Quarkonium and their spectra. Predicted c-cbar and b-bbar states with principal quantum numbers n= 1 & 2 with their properties. The quark-antiquark potential, Lepton-Quark symmetry, Quark mixing, CKM matrix (idea).

4. NONLINEAR DYNAMICS

Linear and nonlinear systems—Qualitative features: Physics of nonlinear systems, conservative versus dissipative systems, dynamical equations and constants of motion, phase space, fixed points, periodic orbits, limit cycles, unstable sets. Linearization and stability analysis, existence and uniqueness theorems, invariant curves and quasiperiodicity, Poincaré-Bendixon theorem.

Bifurcations and onset of chaos: Bifurcations: Saddle-Node, transcritical, pitchfork, Hopf, period doubling and, intermittency, local and global bifurcations, Poincaré cross-section and iterative maps—logistic and Hénon maps. Chaos, features of chaos; continuous and discrete dynamical systems.

Characterization and control of chaos: Sensitive dependence on initial condition, Lyapunov exponents-examples, Coupled systems, quasiperiodicity and strange nonchaotic attractors, ergodicity.

Oscillations and chaos in chemistry, biology and social sciences; some examples. Control of chaos, synchronization—complete, phase, lag, generalized; multistability and riddling, introduction to pattern formation.

Conservative and Stochastic systems: Phase space of simple pendulum, review of KAM theorem, integrable and nonintegrable systems. Chaos in conservative systems, Hénon-Heiles system and the Standard map.

Stochastic systems, random variables and functions, different moments of random variables; auto and cross correlation, mutual information, stochastic vs chaotic motion.

5. NUCLER PHYSICS

Constituents of nucleus and their intrinsic properties, nuclear mass: measurement of mass using mass spectrograph, defect, binding energy. Idea of nuclear fusion-fission, nuclear angular momentum, nuclear magnetic dipole moment, nuclear quadrupole moment.

Radioactive series decay, types of nuclear reactions, conservation laws, Q-value: threshold energy, Energetics of nuclear reactions, energetics of α, β⁺, β⁻ and electron capture (EC) decay. Standard Q-equation and its solution, nuclear reaction, cross-section, idea of differential cross-
section, compound reaction mechanism and its verification – Ghoshal’s experiment, Idea of pre-compound emission, direct reactions and their signatures. Liquid drop model; Weizsacker’s semi-emperical mass formula and some of its applications.

The s-wave scattering, Collision matrix, Unitary and symmetry properties of the collisions matrix. The Reciprocity. Definition of the R-matrix. The resonance scattering, Berit-Winger one level formula.

Electromagnetic current and its interaction with nucleons and nuclei. Electron scattering from nucleons and nuclei. Four-momentum transfer and Mott scattering, the nucleon and nuclear form factors and their experimental determination. The nucleon-nucleon potential: Conservation laws and invariance principles, general form of the nucleon-nucleon potential.

The ground state of the deuterons: Ground state of the deuteron and D-state admixture, Magnetic and electric quadrupole moments. Electromagnetics properties of nuclei: Transitions probabilities, electric and magnetic multipole moments

Physical description of heavy ion interaction, nuclear rainbow scattering, exotic and super heavy nuclei.

6. QUANTUM OPTICS

Quantum information processing: Basic principles of quantum cryptography, Quantum key distribution with BB84 protocol and single photon sources, Quantum bits (qubits), Quantum logic gates and applications of quantum computers, Entangled states, Single photon interference, Bell’s theorem and Quantum teleportation.
7. UPPER ATMOSPHERIC PHYSICS

Elements of Atmosphere and Physical Meteorology:

Dynamical Meteorology:

The fundamental forces, hydrostatic equation, Lapse rate, Enthalpy equation, Entropy of dry air and entropy change, The circulation theorem, vorticity, potential vorticity and potential vorticity equations.

Numerical Methods in Atmospheric Physics:

The finite difference method, the finite difference equation for sound, gravity and Rossby waves, filtering of gravity and Rossby waves, The equivalent-Barotropic model, essentials of numerical weather analysis and forecasting.

Observational Techniques in Atmospheric Physics:

Conventional observational techniques, conventional measurement of pressure, temperature, humidity, wind, precipitation, visibility.
Modern Observational Techniques: LIDARS, SODARS, RADARS.